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Abstract. In this paper we prove that every irredicuble representation of a
Leibniz algebra can be obtained from irreducible representations of the semisim-
ple Lie algebra from the Levi decomposition. We also prove that - in general
- for (semi)simple Leibniz algebras it is not true that a representation can be
decomposed to a direct sum of irreducible ones.

1. Introduction

The notion of Leibniz algebra was introduced by A.M. Bloh ([7, 8] in the 1960-s,
and later rediscovered and developed by J-L. Loday ([9]) in 1993. Since then it
became very popular, mainly because of its applications in physics. A number of
theorems for Lie algebras were generalized for Leibniz algebras, like Lie's Theorem,
Engel's Theorem, Cartan's criterium, Levi's Theorem ([4, 3, 5, 12]), but some other
results do not hold for Leibniz algebras. Representations of Leibniz algebras were
introduced in [11]. Beside that, there is a recent result on faithful representations
([6]).

In this paper we consider representations of semisimple Leibniz algebras, and
study, what can be carried over from the known Theorems in the Lie case. We prove
that every irreducible representation of a Leibniz algebra L can be obtained from
irreducible representations of the semisimple Lie algebra S from the decomposition
L = S+̇I, where I is the Leibniz kernel, S is a semisimple Lie algebra which is a
subalgebra in L. We also prove that for (semi)simple Leibniz algebras it is not true
in general that a representation can be decomposed to a direct sum of irreducible
ones, by giving a counterexample.

The authors thank the referee for the useful comments.
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2. Basic definitions

For basic de�nitions and properties of Leibniz algebras we refer to [9, 11, 2, 1].

De�nition 2.1. Let K be a �eld. An algebra (L, [·, ·]) is called a Leibniz algebra
over K, if for every x, y, z ∈ L we have the Leibniz identity:

[[x, y], z] = [[x, z], y] + [x, [y, z]]

Obviously, every Lie algebra is a Leibniz algebra as well.

De�nition 2.2. We call a K-linear map d : L→ L a derivation, if
d[x, y] = [dx, y] + [x, dy] (x, y ∈ L).

Denote by DerK(L) the algebra of all derivations of L.

If we de�ne the product as the bracket operation, DerK(L) becomes a Lie alge-
bra. The Leibniz identity in L means that for every x ∈ L, rx := [., x] ∈ DerK(L)
is an inner derivation.

Theorem 2.3. Inn(L) := {rx|x ∈ L} forms a Lie algebra and Inn(L) / Der(L).

Because of this property, these Leibniz algebras are also called right Leibniz
algebras. If we de�ne the Leibniz bracket, assuming that the left multiplication
should be a derivation of L, then we call such algebras left Leibniz algebras. (Of
course, one can state every analogous property for left Leibniz algebras as well.)

De�nition 2.4. The Leibniz kernel of a Leibniz algebra L is I = span{x2|x ∈ L},
where x2 = [x, x].

From [x+ y, x+ y] ∈ I we get that for every x, y ∈ L we have [x, y] + [y, x] ∈ I.
If char(K) 6= 2, then [x, x] = 1

2
([x, x]+ [x, x]), so span{[x, y]+ [y, x]|x, y ∈ L} = I.

Theorem 2.5. The Leibniz kernel I is a commutative subalgebra, it is also ideal
in L, and the factor algebra L/I is a Lie algebra. This is the smallest ideal in L
for which the factor is a Lie algebra.

For Lie algebras the square of every element is 0, so I = 0.

Note that if dim(L) ≥ 1, we have I 6= L for the Leibniz kernel I.

If L is not a Lie algebra (I 6= 0), then I is a nontrivial ideal in L, so the de�nition
of simplicity for Lie algebras can not be applied for Leibniz algebras. Instead, the
de�nition is modi�ed as follows:

De�nition 2.6. The Leibniz algebra L is simple, if [L,L] 6= I and it only has the
following three ideals: 0, I, L. (Here 0 and I are not necessarily di�erent.)
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Remark 2.7. As for Lie algebras I = 0, the new de�nition of simplicity coincides
with the old one.

If L is a simple Leibniz algebra, then L/I is simple Lie algebra, but the opposite
is not true.

De�nition 2.8. For a Leibniz algebra (L, [·, ·]) , de�ne the composition chains of
ideals

L1 = L, Lk+1 = [Lk, L], k ≥ 1, L[1] = L, L[n+1] = [L[n], L[n]], n ≥ 1,

De�nition 2.9. The Leibniz algebra L is solvable, if there exists and integer n ≥ 1
such that L[n] = 0, and L is nilpotent, if there exists an integer k ≥ 1 such that
Lk = 0.

Theorem 2.10. For positive integers i, j we have [Li, Lj] ⊆ Li+j. From this it

follows that for every k ≥ 2, L[k] ⊆ L2k−1
, so every nilpotent Leibniz algebra is

solvable.

For the Leibniz kernel I of a Leibniz algebra, I [2] = [I, I] = 0, so I is solvable.
If L is simple, then I 6= [L,L]. But [L,L] is an ideal in L, and I ⊆ [L,L] for every
Leibniz algebra. We get that if L is simple, then the only possibility is [L,L] = L.
From this it also follows that Lk = L[k] = L (k ≥ 1), so L is neither nilpotent nor
solvable.

Corollary 2.11. If L is �nite dimensional, it has a maximal solvable ideal R,
which we call the radical of L. Also, there exists a maximal nilpotent ideal, con-
taining every nilpotent ideal. We call this the nilradical of L, and denote it by N .
Clearly, N ≤ R.

De�nition 2.12. A Leibniz algebra L is semisimple, if its maximal solvable ideal
is I.

Obviously, in every case I / R. So if L is simple, R = I or R = L. Because
of the solvability of R, [R,R] 6= R, which means [R,R] ⊂ R is a proper ideal. If
R = L, then I ⊆ [L,L] = [R,R] ⊂ R = L. In L, except 0, I, L there are no other
ideals, so we would get [L,L] = I, which contradicts the simplicity of L. So for L
we have R = I, which means that from simplicity it follows semisimplicity.

If L is a Lie algebra, again we get that the two de�nitions of semisimplicity
coincide.

A Leibniz algebra L is semisimple if and only if the factor algebra L/I is a
semisimple Lie algebra.

We know the following:
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Theorem 2.13 (Theorem Levi). [4] Let L be a �nite dimensional Leibniz algebra
over K, where char(K) = 0. Let R / L its solvable radical. Then there exists a
semisimple subalgebra S ≤ L such that L = S + R and S ∩ R = 0, so L = S+̇R.
This subalgebra S is a semisimple Lie algebra.

Using this Theorem we get the following:

Corollary 2.14. Let L be a semisimple Leibniz algebra. Then L = S+̇I, where I
is the Leibniz kernel, S ≤ L and S is a semisimple Lie algebra.

Indeed, as L is semisimple, R = I. Then L = S+̇R and S ∼= L/I, which means
S is a semisimple Lie algebra.

De�nition 2.15. Let L be a Leibniz algebra, M vector space over the �eld K.
Assume we have two K-linear functions:

λ : L→ gl(M) and

ρ : L→ gl(M).

Denote λ(x) and ρ(y) by λx and ρy for every x, y ∈ L. We say that M is a
representation of L if the following properties are satis�ed:

(1) ρ[x,y] = ρyρx − ρxρy,

(2) λ[x,y] = ρyλx − λxρy,

(3) λ[x,y] = ρyλx + λxλy, for every x, y ∈ L.

If M is a representation of L, then M becomes an L-module with the following
[·, ·] : M × L → M and [·, ·] : L × M → M products: [m,x] := ρx(m) and
[x,m] := λx(m) for every x ∈ L,m ∈M .

Conversely, for a given L-module M , we get the representation ρ : L→ gl(M),
λ : L→ gl(M) with

ρx := [·, x] ∀x ∈ L, λx := [x, ·] ∀x ∈ L.

Let L be a Leibniz-algebra, M vector space over K, and ρ, λ : L → gl(M) a
representation of L (M is an L-bimodule). Denote for x ∈ L ρ(x) = [., x] ∈ gl(M)
and λ(x) = [x, .] ∈ gl(M) the right and left multiplication by x.

De�nition 2.16. Let ρ1, λ1 : L → gl(M1) and ρ2, λ2 : L → gl(M2) be two
Leibniz representations. These two representations are equivalent, if there exists
an isomorphism ϕ : M1 → M2 such that ϕ ◦ ρ1(x) = ρ2(x) ◦ ϕ (∀x ∈ L), and
ϕ ◦ λ1(x) = λ2(x) ◦ ϕ (∀x ∈ L).
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De�ne now the map ψ : gl(M1)→ gl(M2) as follows: for f ∈ gl(M1) let ψ(f) :=
ϕ ◦ f ◦ϕ−1. We get the isomorphism gl(M1)→ gl(M2) with the property that the
two diagrams commute:

L gl(M1)

gl(M2)

ρ1

ρ2 ψ

L gl(M1)

gl(M2)

λ1

λ2
ψ

If L is a Lie algebra, then its Lie representation ϕ : L → gl(M) becomes a
Leibniz-representation with λ := ϕ and ρ := −ϕ. (One can also take the choice
λ := 0 and ρ := −ϕ.)

If a Lie algebra L has two equivalent Lie representations, ϕ1, ϕ2 (with the iso-
morphism ϕ : M1 → M2), then, using the above construction to form Leibniz
representations, they will be equivalent as well (with the isomorphism ϕ).

Let L be a Leibniz algebra and ρi, λi : L → gl(Mi) (i = 1, 2) two Leibniz-
representations of L. Assume that these representations are isomorphic. For a
given x ∈ L assume that 0 6= v ∈ M1 is an eigenvector of the map ρ1(x) for the
eigenvalue α, ρ1(x)(v) = αv. Then ϕ(v) 6= 0 and ρ2(x)(ϕ(v)) = ϕ(ρ1(x)(v)) =
ϕ(αv) = αϕ(v), so α is an eigenvalue of ρ2(x), and ϕ(v) is an eigenvector for α.

De�nition 2.17. Let K be a �eld, L a Leibniz algebra over K, and V a vec-
tor space over K. We say that the Leibniz representation ρ, λ : L → gl(V ) is
irreducible, if ρ and λ are irreducible. In other words, if U ≤ V is an invariant
subspace of ρ and λ (∀x ∈ L, ρx(U) ⊆ U and λx(U) ⊆ U), then U = 0 or U = V .

Remark 2.18. It is clear that every Leibniz algebra has irreducible represen-
tations, e.g. the one-dimensional ones (which always exist, e.g. the trivial one
λ = ρ = 0). On the other hand, if Vn is an n-dimensional module, there are two
possibilities: either it is simple, or there exists a submodule of smaller dimension.
As the dimension is �nite, we get a simple module in �nite steps.

De�nition 2.19. We say that the representation ρ, λ : L → gl(V ) is the direct
sum of lower dimensional ones, if V can be written as the direct sum of ρ- and
λ-invariant subspaces V = V1⊕V2⊕· · ·⊕Vk such that for every x ∈ L, ρx(Vi) ⊆ Vi
and λx(Vi) ⊆ Vi (i = 1, . . . , k).

If a Leibniz algebra is not semisimple, then already in the 2-dimensional case
the study of its representations is very complicated.
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Let us now deal with the semisimple case, and study what can be carried over
from the statements for Lie algebras to Leibniz algebras.

3. Irreducible representations of Leibniz algebras

3.1. Irreducible representations as Lie representations.

Theorem 3.1. Let L be a Leibniz algebra, M a vector space and λ, ρ : L→ gl(M)
an irreducible representation of L. Then the Leibniz representation can be essen-
tially viewed as Lie representation. We mean that either ρ+ λ = 0 (multiplication
by x is anticommutative on M), or λ = 0 (and so de�ning ϕ := −ρ we get a Lie
representation).

Proof. Let V := span{[y,m] + [m, y]|y ∈ L,m ∈M}. Then
0 ≤ V ≤

⋂
x∈L

Ker([x, .]) ≤M ,

and V is invariant subspace for ρ and λ. The �rst inclusion is obvious, for the
second let x, y ∈ L,m ∈ M be arbitrary, then using the properties of Leibniz
representation, we have [x, [y,m] + [m, y]] = [[x, y],m] − [[x,m], y] + [[x,m], y] −
[[x, y],m] = 0 and we proved the second inclusion. This also proves the invariance
for λ.

The invariant property for ρ is also clear: let again x, y ∈ L,m ∈M arbitrary.
[[y,m] + [m, y], x] = [[y, x],m] + [y, [m,x]] + [[m,x], y] + [m, [y, x]] = ([[y, x],m] +
[m, [y, x]]) + ([y, [m,x]] + [[m,x], y]) ∈ V , because [y, x] ∈ L and [m,x] ∈M .

We showed that indeed V is an invariant subspace for ρ and λ. On the other
hand, we assumed that the representation is irreducible, so there are two possible
cases:

(1) V = 0. Then for a given y ∈ L, [y,m]+[m, y] = 0 ∀m ∈M , so λ(y)+ρ(y) =
0. As y was arbitrary, we get λ+ ρ = 0.

(2) V =M . Then M = V =
⋂
x∈L

Ker([x, .]) =M , so ∀x ∈ L, Ker([x, .]) =M .

But this exactly means that for every x ∈ L, λ(x) = 0, in other words,
λ = 0.
Then by the properties of a Leibniz representation
ρ([x, y]) = ρ(y)ρ(x) − ρ(x)ρ(y), for the linear map ϕ := −ρ, ϕ([x, y]) =
[ϕ(x), ϕ(y)], so ϕ is a Lie-representation.

�
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Remark 3.2. Using the terminology of [10], Theorem 3.1 states that for Leibniz
algebras only symmetric or antisymmetric representations can be irreducible.

Corollary 3.3. The existence of an invariant subspace depends on the irreducibil-
ity of ρ, so a Leibniz representation (ρ, λ) is irreducible exactly when ρ is irre-
ducible.

As a consequence, for a Leibniz representation not being a Lie representation in
the above sense, it is necessary that ρ is not irreducible.

On the other hand, it is easy to show that for a representation not being Lie,
it is not su�cient that ρ is not irreducible. If dim(M) ≥ 2, then with the choice
ρ = λ = 0 we clearly get a Lie representation, but because of ρ = 0, every subspace
is invariant, and because of dim(M) ≥ 2, there exists a proper nontrivial subspace.

3.2. Leibniz representations of the algebra sl2. Computing Leibniz represen-
tations of the Lie algebra sl2 is straightforward.

Let V be a �nite dimensional complex vector space and denote m + 1 :=
dimC(V ). Let ρ, λ : sl2 → gl(V ) a Leibniz representation of the algebra sl2.
By the multiplication table the necessary conditions are the following:

(1) ρh = ρfρe − ρeρf
(2) 2ρe = ρhρe − ρeρh
(3) 2ρf = ρfρh − ρhρf
(4) λh = ρfλe − λeρf = λfρe − ρeλf
(5) λh = ρfλe + λeλf = −λfλe − ρeλf
(6) 0 = ρhλh − λhρh = ρhλh + λ2h
(7) 2λe = ρhλe − λeρh = λhρe − ρeλh
(8) 2λe = ρhλe + λeλh = −λhλe − ρeλh
(9) 0 = ρeλe − λeρe = ρeλe + λ2e
(10) 2λf = ρfλh − λhρf = λfρh − ρhλf
(11) 2λf = ρfλh + λhλf = −λfλh − ρhλf
(12) 0 = ρfλf − λfρf = ρfλf + λ2f

Let us restrict ourselves to the irreducible case, assuming that ρ is irreducible.
If we concentrate on the �rst three conditions, we see that ρ by itself gives a Lie
representation of sl2, or more precisely its (−1) multiple. On the other hand, we
know that for every m, sl2 has a unique (up to equivalence) (m + 1)-dimensional
irreducible representation, and in an appropriate basis, we know the matrices
corresponding to the elements e, f, h. From this we get that in an appropriate
basis of V , ρe, ρf , ρh has the following form (1 ≤ i, j ≤ m+ 1):
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(ρe)i,j =

{
i(m+ 1− i), if j = i+ 1
0, if j 6= i+ 1

(ρf )i,j =

{
−1, if j = i− 1
0, if j 6= i− 1

(ρh)i,j =

{
m+ 2− 2i, if j = i
0, if j 6= i

In matrix form:

ρe =



0 m 0 0 · · · 0 0
0 0 2(m− 1) 0 · · · 0 0
0 0 0 3(m− 2) · · · 0 0
...

...
...

. . . . . .
...

...
0 0 0 · · · 0 2(m− 1) 0
0 0 0 · · · 0 0 m
0 0 0 · · · 0 0 0



ρf =



0 0 0 · · · 0 0 0
−1 0 0 · · · 0 0 0
0 −1 0 · · · 0 0 0

0 0 −1 . . .
...

...
...

...
...

...
. . . 0 0 0

0 0 0 · · · −1 0 0
0 0 0 · · · 0 −1 0



ρh =


m 0 0 · · · 0
0 m− 2 0 · · · 0
0 0 m− 4 · · · 0
...

...
...

. . .
...

0 0 0 · · · −m


Let (λf )i,j be the element of the i-th row and j-th column of λf . Easy to compute

that (λfρh − ρhλf )i,j = 2(i− j)(λf )i,j
10.
= 2(λf )i,j, from where we get (λf )i,j = 0, if

j 6= i− 1. Also

(λfρf )i,j =

{
−(λf )i,i−1, if 3 ≤ i ≤ m+ 1 and j = i− 2
0 otherwise
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(ρfλf )i,j =

{
−(λf )i−1,i−2, if 3 ≤ i ≤ m+ 1 and j = i− 2
0 otherwise

By equation (12):
(λfρf )i,j = (ρfλf )i,j, from where (λf )i,i−1 = (λf )j,j−1 (2 ≤ i, j ≤ m + 1). That
means λf = aρf . By the other term of equation (12), 0 = ρfλf + λ2f = (a+ a2)ρf ,

and as ρf 6= 0, we get a+ a2 = 0. That means a = 0 or a = −1.

(1) If a = 0, then λf = 0, so by equation (4) we get λh = 0, and by (7) we get
λe = 0.

(2) If a = −1, so λf = −ρf , then λh
4.
= λfρe− ρeλf = ρeρf − ρfρe

1.
= −ρh. Also

λe
7.
= 1

2
(λhρe − ρeλh) = 1

2
(ρeρh − ρhρe)

2.
= −ρe. We get that λ = −ρ.

It follows that these two representations are irreducible, as λ = −ρ where ρ was
chosen to be an irreducible representation of sl2.

Summarizing: for every m ∈ N, the algebra sl2 has - up to equivalence - ex-
actly two irreducible Leibniz representations of dimension m+1, each of these are
Lie representations in the previous sense. The two Leibniz-representations are as
follows.

(1) In appropriate basis, λ = 0, and for 1 ≤ i, j ≤ m+ 1,

(ρe)i,j =

{
i(m+ 1− i), if j = i+ 1
0, if j 6= i+ 1

,

(ρf )i,j =

{
−1, if j = i− 1
0, if j 6= i− 1

,

(ρh)i,j =

{
m+ 2− 2i, if j = i
0, if j 6= i

.

(2) In appropriate basis, λ = −ρ, and for (1 ≤ i, j ≤ m+ 1),

(ρe)i,j =

{
i(m+ 1− i), if j = i+ 1
0, if j 6= i+ 1

(ρf )i,j =

{
−1, if j = i− 1
0, if j 6= i− 1

(ρh)i,j =

{
m+ 2− 2i, if j = i
0, if j 6= i
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These two irreducible representations are obviously not equaivalent to each
other.

We know that the extensions of dimension at least 5 of sl2 can be obtained as
follows.

Let L be a simple n-dimensional Leibniz algebra (n ≥ 5), for which the Lie
factor L/I is isomorphic to sl2. We know that in this case there exists a basis
{e, f, h, x0, x1, . . . , xn−4} of L, in which the multiplication table is as follows: ([13])

[xk, h] = (n− 4− 2k)xk, (0 ≤ k ≤ n− 4)
[xk, f ] = xk+1, (0 ≤ k ≤ n− 5)
[xk, e] = k(k + 3− n)xk−1, (1 ≤ k ≤ n− 4)
[e, h] = −[h, e] = 2e, [h, f ] = −[f, h] = 2f,
[e, f ] = −[f, e] = h

It is easy to compute its irreducible representations. Let dimC(V ) = m+1, and
search for possible homomorphisms ρ, λ :→ gl(V ). We know that a representation
can be restricted to sl2, and the restriction of ρ is irreducible. This way ρe, ρf , ρh
and λe, λf , λh are given by the previous rules. We would like to determine the
images of the elements xi. We can distinguish two cases:

(1) n is odd. By the equality (n− 4)ρx0 = ρ[x0,h] = ρhρx0 − ρx0ρh we get

(n− 2)(ρx0)i,j = 2(j − i)(ρx0)i,j
(n− 2 + 2j − 2i)(ρx0)i,j = 0.

As n is odd, (n− 2 + 2i− 2j) 6= 0, so (ρx0)i,j = 0 for every pair i, j. We
get ρx0 = 0.
Using induction, we can see that ρxk = 0. For k = 0 we have this, and
using the inductional assumption we get

ρxk+1
= ρ[xk,f ] = ρfρxk − ρxkρf = 0− 0 = 0.

Apply now the above argument, replacing ρxk by λxk , and use λ[x,y] =
ρyλx − λxρy.
We get that in this case ρxk = λxk = 0, if 0 ≤ k ≤ n− 4.

(2) n is even. Then let n− 4 = 2s. In this case [xs, h] = (n− 4− 2s)xs = 0.
From here by 0 = ρ[xs,h] = ρhρxs − ρxsρh we get that ρxs must be diagonal.
Denote

(ρxs)i,i = bi, (1 ≤ i ≤ m+ 1).
On the other hand,

−s(s+ 1)ρxs−1 = ρ[xs,e] = ρeρxs − ρxsρe,
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which gives (ρxs−1)i,j = 0, if j 6= i+ 1, and

ai,i+1 = (ρxs−1)i,i+1 =
(bi+1 − bi)i(m+ 1− i)

s(s+ 1)
,

if 1 ≤ i ≤ m. As [xs−1, xl] = 0, we get
0 = ρxsρxs−1 − ρxs−1ρxs ,

which means (bi+1 − bi)ai,i+1 = 0, if 1 ≤ i ≤ m.
So

0 = (bi+1 − bi)ai,i+1 = (bi+1 − bi)
(bi+1 − bi)i(m+ 1− i)

s(s+ 1)
,

from where b1 = b2 = · · · = bm+1, and so ρxs−1 = 0. For k ≥ s, using the
product [xk−1, f ] = xk, by induction we get ρxk = 0.
For k ≤ s − 1 using the product [xk, e] = k(k + 3 − n)xk−1 we get by
induction, that k(k + 3 − n)ρxk−1

= 0, and as 1 ≤ k ≤ s − 1 ≤ n − 4, so
k(k + 3− n) 6= 0, which means ρxk−1

= 0.
We showed for every k (0 ≤ k ≤ n− 4) that ρxk = 0.
For de�ning the values of λ, consider the expression 0 = λ[xs,h] = ρhλxs−

λxsρh . We get that λxs is diagonal. Denote
(λxs)i,i = ci, (1 ≤ i ≤ m+ 1).

On the other hand,

−s(s+ 1)λxs−1 = λ[xs,e] = ρeλxs − λxsρe,

from which (λxs−1)i,j = 0, if j 6= i+ 1, and

di,i+1 = (λxs−1)i,i+1 =
(ci+1 − ci)i(m+ 1− i)

s(s+ 1)
,

if 1 ≤ i ≤ m. Using [xs−1, xl] = 0, we get

0 = ρxsλxs−1 + λxs−1λxs = λxs−1λxs =

= ρxs−1λxs + λxsλxs−1 = λxsλxs−1

This means 0 = λxs−1λxs − λxsλxs−1 and

0 = (ci+1 − ci)di,i+1 = (ci+1 − ci)
(ci+1 − ci)i(m+ 1− i)

s(s+ 1)
.

With the previous argument we get λxk = 0, if 0 ≤ k ≤ n− 4.
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In both cases the �nal result is that for the elements {x0, . . . , xn−4}, ρ and λ is
zero. This means that the Leibniz algebra L has for every m two types of (m+1)-
dimensional Leibniz representations, such that ρ, restricted to the subalgebra sl2 is
irreducible. We get these two representations from representations of sl2 by chosing
ρ|I = λ|I = 0 (here I denotes the Leibniz kernel (generated by the elements x2k).

3.3. General case. Using the results from the previous section, consider irre-
ducible representations of a semisimple Leibniz algebra L. We know that L =
S + I as a vector space. As I is generated by the squares of elements in L,
for every x ∈ I there exists n ∈ N, α1, . . . , αn ∈ K, and x1, . . . , xn ∈ L such
that x = α1[x1, x1] + · · · + αn[xn, xn]. Using the linearity of ρ and the identity
ρ[x,y] = ρyρx − ρxρy we get:

ρx = α1ρ[x1,x1] + · · ·+ αnρ[xn,xn]

ρ[xi,xi] = ρxiρxi − ρxiρxi = 0, so ρx = 0 for every x ∈ I.

We have L = S + I as a vector space, so every y ∈ L can be uniquely written
in the form y = s + x, where s ∈ S and x ∈ I. We get ρy = ρs + ρx = ρs, which
means ρ(L) = ρ(S).

As ρ is irreducible, by Theorem 3.1 we get λ = −ρ or λ = 0. In any case, as
ρ|I = 0, we must have λ|I = 0. Here (−ρ)|S is an irreducible representation of the
semisimple Lie algebra S.

Let us summarize the results.

Theorem 3.4. Let L be a semisimple Leibniz algebra over the �eld K, with
char(K) = 0. Let V be a vectorspace over K. Then L can be written in the
form L = S+̇I, where I is the Leibniz kernel, S is a semisimple Lie algebra which
is a subalgebra in L. Then every irreducible representation ρ, λ : L → gl(V ) of L
can be written in the following form:

ρ|I = λ|I = 0, ρ|S = −ϕ, where ϕ : S → gl(V ) is an irreducible representation
of the semisimple Lie algebra S, and λ|S = (−ρ)|S or λ|S = 0.

That means that every irreducible representation of L can be obtained from the
irreducible representations of S, and we do not get new, not Lie type representa-
tions.
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4. Reducible representations of semisimple Leibniz algebras

For semisimple Lie algebras we know that every representation is completely
reducible, that means it can be written as a direct sum of irreducible ones. The
question is the following. Can this statement be carried over to Leibniz algebras?

If a Leibniz representation splits into the sum of irreducible ones, i.e. V =
V1⊕ · · · ⊕ Vk, then for every i, (1 ≤ i ≤ k) λ|Vi = 0 or λ|Vi = (−ρ)|Vi . As for x ∈ I
(I is the Leibniz kernel) ρx = 0, then in both cases, λx|Vi=0. As V = V1⊕· · ·⊕Vk,
we get λx = 0.

That means if a representation decomposes into a direct sum of irreducible ones,
then we must have ρ|I = λ|I = 0.

Example 4.1. Consider the following simple Leibniz algebra: L = span{e, f, h, x, y},
the nontrivial Leibniz brackets are:

[e, f ] = −[f, e] = h, [e, h] = −[h, e] = 2e, [f, h] = −[h, f ] = −2f,
[x, h] = −[y, e] = x, [x, f ] = −[y, h] = y.

For this algebra I = span{x, y}. Let V := L, so consider L as L-module: for
v, z ∈ L, ρz(v) = [v, z] and λz(v) = [z, v].

It is easy to see from the bracket table that λ|I 6= 0 and the representation
can not be decomposed into irreducible ones. Even more, in this case the only
nontrivial invariant subspace is U = I, so we indeed did not �nd any appropriate
decomposition. The fact that I is the only nontrivial invariant subspace, follows
from the simplicity: the invariant subspaces are in this case exactly the ideals.

We get the following

Theorem 4.2. For Leibniz algebras it is not true that a representation of a
(semi)simple Leibniz algebra always decomposes into the direct sum of irreducible
ones.

Remark 4.3. Of course, there are cases when the representation can be decom-
posed into irreducible ones.

Example 4.4. Consider a �ve-dimensional, not irreducible representation of sl2:

ρe =


0 2 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 ρf =


0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 −1 0


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ρh =


2 0 0 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 1 0
0 0 0 0 −1


Again, starting with the identity (10), we get

λf =


0 0 0 0 0
a21 0 0 0 0
0 a32 0 0 0
0 0 0 0 0
0 0 0 a54 0

, so λf is block diagonal.

From the identity (4), λh, from (7), λe are also block diagonal, which means
this representation can be written as a direct sum of irreducible ones. The whole
point was, that λf had block diagonal form. This happened because (λf )i,j=0, if
(ρh)j,j − (ρh)i,i 6= 2.

For λf not (necessarily) being block diagonal, one needs (ρh)j,j − (ρh)i,i = 2 for
such pairs {i, j}, where i and j are indices of rows which do not belong to the
same block along the diagonal.

If for instance the representation has dimension (2n+ 1), and we try to decom-
pose it to the sum of two irreducible ones, then one of them has dimension 2m, in
the appropriate block there are odd numbers along the main diagonal of ρh, while
the other one has dimension (2n− 2m+1), and in the appropriate block there are
even numbers along the main diagonal of ρh. So the condition (ρh)j,j − (ρh)i,i = 2
can only be satis�ed, if i and j are indeces of such rows, which belong to the
same block. In this case everything is diagonal, and so the representation can be
decomposed into the sum of irreducible ones.
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